
7 AD-AO87 610 CUNDALL (PETER) ASSOCIATES
VIRGINIA WATER (ENGLAND

FIG 8/7

MA0 C UNALDJ39C04C ENERALISED DISTINCT ELEMENT PROGR AM FOR MODELLING SOl I-ETC(U)

UNCLASSIFIED PC AR180 NLEMEMNONME..
EEMEEEEE

hhhhhmmhhmh

r1

UDEC - A GENERALISED DISTINCT
0ELEMENT PROGRAM FOR MODELLING

JOINTED ROCK

Final Technical Report

by

Peter Cundall

March 1980

EUROPEAN RESEARCH OFFICE

United States Army

London England

CONTRACT NUMBER DAJA37-79-C-0548 AUG 6 1980

Peter Cundall Associates

Approved for Public Release; distribution unlimited

CID

6 003

Unclassified R&D 2T29
SECURITY CLASSIFICATION OF THIS PAGE (When Data nee)________________

Jp~~~~~~~~-~~RA WERLIETRIUIC MEEN Fnl cnia

14. ONIORIN AGNCYNAME& AORES(5Id 2. o T CE SSrIigONfe N I. SECUIPETS CAS.fTAtG rUMEoR

U.~~S S.P OF~lJ PREP
Box 60,

Cal Non

__ DS RISUIO -STEMEN qIT1ofFEMN t-l Rinl port)

Dis P teributioun l imited-T!
4

I. PEMENTAORGANIZOTS EADADRS o RGR LMN. RJC.TS

Rockr mchaicsocMatesai m~odes 6oc dynamics5 01rte omai

Jorined WrockSuryEnld

13 D
Wahngton a DC , 2030

69~emn Delb pblc ubr
14. MOIORN newNC comute prgr& DEC haif eren deveonroloped Of hich I.SUITYLASS(ths behaor
.'inte rock Raeserc &l.jce tohiEian. r)in ~~~g. sa x
poiit Nonmrh rcdr ta oes sebae fdsrt lcso

te bevor of51 riilcs5ipl eombltand fuCLl deIformabIlity. The

Anpod fornes PulcRees
- Disrbto un1473 ed' 'OOIOSLZ iUcasfd /

17. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ LWPC~O DITIBTO STATMEN (of theu abstac eneediatok20etrefeetfrmReot

TABLE OF CONTENTS

Page

List of Figures i

Acknowledgements ii

CHAPTER 1 - INTRODUCTION 1

CHAPTER 2 - ADDITIONS AND CHANGES TO PREVIOUS WORK 4

CHAPTER 3 - DATA STRUCTURES 16

CHAPTER 4 - USE OF PROGRAM 30

CHAPTER 5 - CONCLUSIONS AND FUTURE DEVELOPMENTS 33

REFERENCES 34

APPENDIX I - USER'S MANUAL 35

* Appendix I-1 Input Commands 36

* Appendix 1-2 Error Messages 40

APPENDIX II - EXAMPLE RUNS 41

* Appendix II-1 Ball Rolling 42

* Appendix 11-2 Collapse of Opening in Jointed Rock 45

APPENDIX III - PROGRAM GUIDE 50

* Appendix III-I Main Common Block Variables 51

* Appendix 111-2 Parameters and Data Group 53

* Appendix 111-3 Subroutine Functions 57

* Appendix 111-4 Subroutine Calling Map 64

APPENDIX IV - GUIDE TO PROGRAM CHANGES 67

* "f'-

LIST OF FIGURES

Page

Fig. 1 Changes in linked lists that occur when
two blocks come into contact. 17

Fig. 2 Two types of scan that are possible with the
same data structure. 18

Fig. 3 Linked lists for main data arrays. 21

Fig. 4 Block pointers and reverse corner links. 23

Fig. 5 Convention used for pointers within a contact array. 24

Fig. 6 Structure of 'junk list' holding redundant
groups of memory. 25

Fig. 7 To show the convention for ordering contact
and corner data. 26

Fig. 8 Domain Linkages. 27

Fig. II-i System of blocks prior to deletion 44

Fig. 11-2 Motion of 'block' under gravity. 44

Fig. 11-3 Initial Geometry 45

Fig. 11-4 Block Movement Sequence 47

Fig. 11-5 " " " 47

Fig. 11-6 " " " 48

Fig. 11-7 " " " 48

Fig. 11-8 " " " 49

I6
* I

ACKNOWLEDGEMENTS

The contributions of Dr. Gurdip Kalsi, Ms. Helen Adhami and
Ms. Susan Backhouse are gratefully acknowledged. Dr. Kalsi assisted
in program development and documentation, and was responsible for
testing the program. Ms. Adhami produced the report and Ms. Backhouse
supplied the illustrations.

iii

" I
' -j

1.0 INTRODUCTION

1.1 Background

qiwork described in this report follows that performed under contract

DACA39-77-C-qO4 and presented in "Computer Modelling of Jointed Rock Masses" by/
Cundall et al (1978)*.

In the previous study several computer programs were developed as exam-

ples of the "distinct element method", which is an explicit, time-marching pro-

cedure that models assemblies of discrete blocks or particles that interact mech-

anically. The first program was restricted to rigid blocks, and was a translation

into Fortran of an earlier machine-language code that used interactive graphics

to create and manipulate blocks. A second program introduced simple deformability,

whereby each block has three degrees of freedom to deform internally. A modified

version of the rigid block program was written in order to allow blocks to split

into two, using a simple criterion based on the applied loads and the block dim-

ensions. Finally, an experimental program was written in which blocks could be

discretised internally into finite-difference triangles. Such blocks are termed

"fully-deformable".

Apart from the inconvenience in having different facilities available

in different programs, the computer programs were written with no particular

emphasis on efficiency or flexible data structures, since the intention was to

demonstrate and test some new formulations. Furthermore, it has become apparent

that it would be difficult to represent certain physical behaviour, such as fluid

interaction, edge-to-edge contact and soft corners, without major overhaul of

the program logic and data structures.

These considerations prompted the program development described in this

report.

1.2 Scope of Present Work

A completely new program, UDEC+, has been developed, which provides,

in one package, almost all of the capabilities that existed separately in the

Cundall, P.A. et al, Technical Report N-78-4, U.S. Army Engineers Waterways
Experiment Station.

+Universal Distinct Element Code.
-1i-

previous programs. The principal objective was to write a program that would

allow rigid blocks, simply-deformable blocks and fully-deformable blocks to be

mixed together in one numerical simulation. It is often useful to mix differ-
ent types of block for the following reasons: near a free surface in jointed

rock, the movements arise predominantly from slip and opening of joints. In
these regions rigid blocks may be used, for maximum efficiency of calculation.

On moving away from a free surface, towards the interior of a rock mass, joint

displacements diminish in comparison with deformations of the intact rock, and

the stress distribution is determined largely by the elastic properties of the

rock. Deformable blocks should be used in these regions to represent the rock
behaviour correctly. The correct boundary conditions are especially important

for dynamic calculations in which incident waves are to be propagated towards a

rock structure, and reflected waves are to be absorbed. Again, deformable blocks

are needed near the boundary to provide the correct propagation velocity and the

correct driving impedence for absorbing boundaries.

Although the contractural requirement of the study was limited to the

provision of a program incorporating the three types of block noted above, the

opportunity was taken to re-examine the way in which the data describing the

blocks is represented: the "data structure". The data structure determines

to a very great degree how easy it is to represent diverse physical phenomena.

Two guiding principles influenced the choice of a data structure: firstly it

was assumed that the best data structure is the one that corresponds in a topo-

logical sense most closely to the physical structure. In previous programs,

the only correspondence was between stored variables and physical variables.

The new program actually stores the variables in memory in a way that has iden-

tical topological properties to the physical arrangement. The second assumption

that was kept in mind during the design of program UDEC was concerned with the

way in which computer hardware is developing. Typical memory sizes have in-

creased and costs have decreased by orders of magnitude over the last decade;

megabyte memories are now common in minicomputers, and are just becoming avail-

able for microcomputers. Execution speeds have also increased, but at a slower

rate. Often, when writing a program, it is possible to make a trade-off between

memory use and execution time: for example, variables may be saved to avoid re-
calculation within a loop. The philosophy of reducing execution time at the

expense of greater memory requirements has been adopted throughout.

-2-

Ttre numerical formulations of the various block types are almost

identical to those documented in the previous report by Cundall et al (loc cit).

The formulations are not repeated in this report, and the reader is encouraged

to read the previous report in conjunction with this one. Any differences,

such as rounded corners, are described in Chapter 2, which also documents other

changes and additions arising from the new data structure. The data structure

itself is documented in detail in Chapter 3.

Program UDEC allows interaction between three block types: rigid,

simply-deformable and fully-deformable. Of the six possible interactions

(e.g. rigid/rigid, rigid/simply-deformable etc.) five require (due to their basic

formulation) that contacts shall consist of finite stiffnesses. Only the inter-

action between fully-deformable blocks has the possibility of rigid contact

between opposing grid-points. Rezoning is necessary in this case to keep con-

tacting grid-points opposite one another. It was decided to omit rezoning from

program UDEC, and impose a restriction that all contacts be of finite stiffness.

In practice, an arbitrarily-large stiffness may be used, but at the expense of

a very small time step. It was felt that the complication of rezoning was in-

appropriate in a program that was primarily intended to model rock blocks with

finite-stiffness joints, and that its inherent inefficiency could not be justified

by the very small number of cases for which it might be used.

3

2.0 ADDITIONS AND CHANGES TO PREVIOUS WORK

There are a number of problems associated with existing distinct ele-

ment programs for modelling assemblies of angular blocks. The more important

of these are as follows:

a. The system of "boxes" used for coarse classification of

blocks is quite efficient when the blocks are of a similar

size. For blocks that are much larger than the box

dimension, much time is taken searching all the boxes

overlapping the block and depositing and moving entries

among these boxes. For blocks that are small compared

to the box size, many potential contacts must be tested

within each box, although only a few will be accepted.

b. It is necessary to perform updates (searches for new

contacts) globally in all programs except RBMC, owing to

the difficulty of guaranteeing that a given corner will

always locate a nearby edge.

c. There is a limitation on the coordinate system that can

be chosen, so that the dimensions of a given block system

must be scaled before running a problem. This restriction

is made because the magnitudes of block coordinates are

used to trigger re-boxing of pointers within the box system.

d. Blocks cannot be deleted, except in the original machine-

language version of the rigid-block program.

e. "Hang-ups" occur when two blocks overlap by an arbitrarily-

small amount, because block corners are assumed to be sharp

and infinitely strong.

f. Contact is always between an edge and a corner; edge-to-edge

contact is only approximately represented by two edge-to-corner

contacts.

-4-

g. When the edge of one block slides past the edge of another,

as shown below, there is a discontinuity in contact force

because one edge-to-corner contact must break before another

corner-to-edge contact can form. Stored energy is lost

because a load-carrying contact is suddenly deleted.

FIXED

CORNER-TO- EDGE- TO-
EDGE CONTACT CORNER CONTACT

All the problems noted above are eliminated in the new formulation

of the distinct element method described in this report. The main changes are

to the data structures, and in the fact that rounded corners are used. Several

specific innovations are described below.

2.1 Detection of Contacts

Chapter 3 describes the new data structues in detail, and the way

in which their topological properties correspond closely with those of the

physical system of blocks that they represent. It is this correspondence that

allows the old "box" scheme to be dispensed with: the connectivity of the physical

system is built into the data structure, which means that potential contacts with

a given block may be detected by a local examination of the linked-list network

surrounding the block. However, for the scheme to work well, there must be a

well-developed connectivity; the main application will be to systems of blocks,

-5-

each of which is very near several other blocks. This is likely to be true

for program UDEC, which has the main applications in modelling jointed rock

masses, where blocks are all touching initially.

2.2 Update Triggering

An "update" is defined here as a scan of some region to determine if

new contacts should be made or to erase unwanted contacts. As illustrated be-

low, a new contact can only arise physically within a closed region between

blocks, called a "domain".

= 00SOME POTENTIAL
DOMAINCONTACTS

I <

For this reason, an update is limited to an individual domain, and is

triggered by significant relative motion occurring within the domain. A scheme

has been adopted whereby a fictitious displacement is accumulated for each domain.

This displacement is related to the relative motion that has taken place in the

domain since the previous update, and is used to trigger the next update when

the displacement exceeds a certain tolerance. At each time-step, the greatest

relative x- and y-velocities are recorded between any two corners within the do-

main (including corners that are part of a contact). The fictitious displace-

ment is then accumulated as follows:

-6-

= {f+ ax(idIi~lila) .At,
.M .mf

where u and u are the greater relative velocities, u is thex y

fictitious displacement and At is the time-step. An update

is done for the domain when

f TmU > -

where T is the tolerance on making contacts ("contacts" are established

before the two blocks actually touch: T is the distance between

potentially contacting points). The criterion for triggering

updates given above ensures that contacts are always detected

before physical contact is made.

2.3 Rounded Corners

In program UDEC, blocks behave mechanically as if each corner consists

of an arc of a circle; the arc is tangent to the two adjoining edges. The

circle is defined by specifying the distance from the block corner to the inter-

section points of the circular arc with the adjoining edges. This procedure

seems physically more reasonable than a specification of a constant radius for

all corners, since sharp corners would be considerably truncated if the same

radius was used for all corners.

CONSTANT RADIUS CONSTANT DISTANCE TO CORNER

-7-

The distance, D, may be specified by the user, and applies to all

blocks. It is stored as Fortran variable DTOL. Radius and circle centre

are calculated for each corner as follows:

R
X.1

C
CENTRE x.

R L
x.

i

D
X.

CORNER .

zL= {(x - xi (xi -L i)

Z'i zR = {(xR xi) (x' - i

unit vectors:

I L= L L
ui (xi - i) / Z

R R
Si= (xi - xi)/ZR

tangent unit vectors:

L uL R R
t 2 1 t 2 =Ul

L L R R
t _ u2 tR -u2

-8-

by vector addition,

DuL + RtL + RtR DuR

therefore

D(u R - uLD(u~ R u L

R or R= L R
t + t t2 + t2

__u__u__ D~u u ,
SR R= LDu -u 11 Du 2 u 2

R + u (1 R u 1L + u R (2)

Either form (1) or form (2) may be used, depending on the magnitude

L + R L R
of u2 + u2 compared to u1 + u1

. The expression with the largest denominator

is used in UDEC.

The circle centre is found from:

C L L
x. = x. + Du_ + Rt1 1 1 1

In the present form of UDEC, corners are assumed to be rounded only

for the purpose of calculating contact mechanisms; block mass and moment of

inertia are calculated on the assumption that corners are angular. This assump-

tion is not essential, and the program can be changed quite easily.

2.4 Edge-to-edge contact

Chapter 3 contains a description of the data structures, and in partic-

ular the linked-list representation of a domain. A domain is a closed area

bounded by blocks and contacts: the associated linked-list is a circular chain

of contacts and corners encountered during an anti-clockwise scan of the domain

boundary.

Only two types of contact are needed by the data structure for represent-

ing a system of blocks: corner-to-corner contacts and edge-to-corner contacts.

-9-

These will be termed "numerical contacts". Physically, however, edge-to-edge

contact is important because it corresponds to the case of a rock joint closed

along its whole length. A physical edge-to-edge contact corresponds to a domain

with exactly two numerical contacts in its linked-list. When an edge-to-edge

contact is recognised in this way during a domain scan, it is treated differently

from other contacts in respect of its physical behaviour. For example, it is

more appropriate to express the constitutive model for such a contact in terms

of stresses rather than forces. Stresses can be evaluated by the program since

the length of the physical contact is known from the distance between the two

numerical contacts.

Many types of constitutive model for edge-to-edge contact may be con-

templated. The program provides the displacements at either end of the joint,

and the model must furnish the average normal and shear stress, and the line of

action of the resultant forces. The simplest consitutive model is as follows:

I

tAA
Un n

Fn

-10-

Aa f (an, Au, Au) where: Au = 1 (AuA + AuB)
n n n no s n 2 n n

AT f (an, T , Au, Au) Aus (AuA + AuB)
s n fl SS 2 s s

A A
a = a + Aa Au , Au s normal and shear displacement

increments at end A of joint;

B BT =T + AT Au , Au = same, at end B of joint

a = normal stress
n

T = shear stress

prime () denotes new value.

f , f = non linear functions
n s

F = p.n p = joint length

Fs = p.a F ,Fs = overall normal and shear forcesns n

A

uA nu

FA - r F F .r Fr- n
n n s rn A B

n n

F - (-r)F F B . (1-r)
n n s s

In the procedure presented above, the line of action of the resultant

forces is determined by making the ratio of end forces equal to the ratio of end

displacements:

FA A A uA
n _ s n

FB uB P B uB

- 11 -

Any other scheme may be substituted: for example, the angle between

the two block faces may be used to determine the line of action, or the centroid

of the overlap area may be used. In both cases, the program already provides

the necessary geometrical data.

2.5 Contact re-classification

One advantage of rounded corners is that there are no abrupt transitions

as blocks in contact slide past one another. In the sequence shown below, the

same contact is re-classified successively as corner/edge, corner/corner, edge/

corner.

In previous block programs, the same sequence would involve the initial

contact breaking, and a new one being created. The data structures of UDEC allow

the same contact to be retained through the whole sequence. The only change is

that a code number denoting the classification of the contact is updated as the

blocks move.

2.6 Calculation sequence

In all explicit, time-marching schemes the main calculation cycle con-

sists of applying the law of motion to all mass-points followed by the calculation

of force increments from displacement increments for all spring-like elements

(contacts, continuum zones, fluid cells, etc.). Program UDEC follows this gen-

eral scheme although it is complicated by the need to make and break contacts,

and the fact that many different types of element are allowed to interact.

- 12 -

For all blocks:

accelerate centroids from force-sums.

calculate strain-rates for simply-deformable blocks from applied

stresses.

accelerate grid-point masses from internal and boundary forces

for fully-deformable blocks.

update corner velocities and displacements.

apply new relative velocities to surrounding contacts.

reset force-sums to zero.

For all domains:

accumulate fictitious domain displacements and update domain if

necessary (i.e. make and break contacts).

compute incremental pore pressures from velocities around domain;

apply resulting forces to blocks.

For all contacts:

update contact forces from known relative contact velocities using

constitutive model.

accumulate centroid force-sums, grid-point force-sums and applied

stresses for simply-deformable blocks from contact forces.

allow fluid flow between the 2 domains on either side of contact:

update pore pressures.

For all zones:

compute strain rates; hence new stresses; hence grid-point forces.

2.7 Creation of blocks and joints by splitting

The main application of program UDEC will be to model in-situ rock masses.

It is convenient to generate the numerical system of rock blocks by specifying
the joints (discontinuities) rather than individual blocks. Not only is the

input data less voluminous, but the joint properties can be specified independently

of the rock properties. Consequently the principal way of creating a system of

rock blocks in UDEC is by splitting existing blocks, and deleting blocks that are

not needed. Almost any geometrical arrangement may be created in this way.

The subroutine that splits blocks may also be called dynamically, while UDEC is

running, so that blocks may fracture as a function of the load applied to them.

- 13 -

2.8 Pore-pressure calculations

The framework for representing pore-pressure generation and dissipation

exists in UDEC but no tests of the capability have been made at the time of

writing. The data structure provides a network of inter-connected domains and

contacts that can be regarded as reservoirs and pipes respectively. For each

domain, increments in fluid pressure can be calculated from the known incremental

displacements of the block corners that constitute the boundary to the domain.

The block forces arising from the fluid pressures can be calculated, since the

coordinates of each point around a domain are known. During a contact scan,

the pressures on either side of each contact can be relaxed, by assuming that

the constriction corresponding to the contact has a certain hydraulic conduc-

tivity. In this way pore-pressures may be continuously generated and dissipated

as the blocks move.

2.9 Fully-deformable blocks

As discussed in the Introduction, no re-zoning is performed when fully-

deformable blocks slide over one another. The use of finite contact stiffnesses

between blocks enables the calculations for adjacent blocks to be decoupled;

they communicate through a common boundary force. The mass-points (also called

grid-points) on the boundary of a fully-deformable block are accelerated in the

normal way during each time step in proportion to the sum of the forces arising

both from within the block and from any contacts that exist at the points. Rel-

ative contact velocities are updated from the velocities of the block boundaries

on either side of each contact.

The general scheme outlined above is complicated by the fact that grid-

points from opposing blocks need not coincide: edge-to-corner contact is allowed.

In order to calculate forces and displacements at boundary locations other than

grid-points, it is assumed that each boundary segment between grid-points acts as

a rigid bar with prescribed end velocities: the velocities are assumed to vary

linearly along the bar. This assumption is consistent with the assumption that

the triangular zones are of the constant-strain type. Any forces acting on the

bar are distributed tc the t-wo ends, while maintaiaing moment and firce equilibrium.

- 14 -

Bd
u. applied

force
grid-point

linearlv-

A varying velocities equivalent
forces at ends

. u. = end velocities
1

FULLY -OEFORMABLE VELOCITY ASSUMPTION FORCE ASSUMPTION
BLOCK

A further complication is caused by the rounded corners. In the case

of rigid and simply-deformable blocks, forces and velocities are transmitted

exactly at the point of contact. For fully-deformable blocks, the calculation

to do this becomes lengthy, and in some cases ambiguous when several zones meet

at the same grid-point. The present version of UDEC contains an approximate,

but rapid calculation when transmitting forces and velocities at corners that

form part of a contact: the contact force is assumed to act at the corner of

the block, and not at the true contact point found by assuming rounded corners.

Similarly the velocity transmitted to the contact is taken as the corner velocity

even though contact is located somewhat inside the corner-point. The rounded

corners still operate as intended, since the contact normals and the relative

block positions for contact are correct, but the slight error in location of

contact forces and velocities introduces a moment and rotation error, respectively.

It will be necessary to gain experience using the program to find out whether the

errors are significant in practice: if they are too large, the program can be

modified, but at the expense of efficiency.

is

3.0 DATA STRUCTURES

3.1 Main Structure

There are many subsidiary pointers and lists that help in retrieving

data quickly, but the main data structure is described as follows. Each block

has a circular linked-list that corresponds to its boundary. Each corner on

the boundary is represented by an array of words that stores the coordinates of

the corner, the velocity and several other items. The corner arrays are linked

together consecutively in the clockwise direction. When two blocks come into

contact their corner lists are broken at the points of contact and an array of

words (corresponding to a contact) is inserted into the break, such that the con-

tact array is common to the corner lists of both blocks. The process of making

a contact is illustrated in Fig. 1. It should be noted that in all diagrams,

computer variables and symbols, the following letters are used in referring to

the various entities:

C contact D domain

P corner Z zone

B block G grid-point

The small boxes labelled "corner array" and "contact array" are placed

on the diagram near the physical locations that they represent, but in the program

UtEC they exist as groups of contiguous memory addresses contained in the single

Fortran array IA(). The actual locations of the groups in IA () are unimportant

and arbitrary, since the data in the groups are retrieved by following the appro-

priate pointers.

The example shown in Fig. 1 illustrates that there are two paths leading

away from a single contact. Depending on the scanning strategy used, it is

possible to follow either block boundaries or the spaces (domains) between blocks.

Fig. 2 illustrates the two possibilities for the same data structure.

Fig. 2(a) shows an anti-clockwise scan that traces the boundary of an

inter-block domain; Fig. 2(b) shows a clockwise scan that traces a block boundary.

The first type of scan is useful when calculating pore pressures from changes in

pore volumes, while the second type of scan is used when up-dating the velocities

of corners and contacts around a block from the motion of the block itself.

-16-

:.:.:~~' pL C *X..-*
..... E.ORE.CONTACT

BLOCKS~~BOC COE2T OTC

PET=c CONTACT ASSRRATY

11 uh c-17-Tri

a) ~SCANAROND TE DOAINBETWEN BOCt

JI ~~ AND

PETER~i CUC23ASOIAE

..... LB -

The data structure outlined above is better than those used in previous

distinct element programs for the following reasons:

a) each block has direct access to all its contacts, and thereby to all

neighbouring blocks; the creation and deletion of contacts is made

easy;

b) closed domains between blocks are defined without additional computing

overhead; pore-pressure increments may be calculated from known

velocities around the domain boundaries;

c) each contact has direct access to the two domains on either side of

it; hence the calculation of fluid flow between domains is made easy.

d) edge-to-edge contact may be detected simply by noting when a domain

volume collapses to zero.

e) The search for new contacts can be triggered locally, by monitoring

relative displacements within each domain; the part of a block that

intrudes into a domain can only touch another block in the domain.

The observations made above support the contention made in the Intro-

duction that the best data representation is that which corresponds most closely

to the physical structure: any changes and interactions that occur physically

can be treated in exactly the same way in computer memory.

However, the data structure described above is not suitable for repre-

senting assemblies of particles that are widely-separated, or particles that move

with high velocities. The linked-list scheme assumes that the connectivity of

the system changes gradually, and that the domains between particles are clearly

defined by a closed loop of contacts. The scheme can handle isolated cases

where individual particles lose contact with their neighbours, by using "virtual

contacts", which are fictitious links between particles. But the computer program

is not designed for multiple virtual contacts; in this case it becomes inefficient.

3.2 Data arrays

The main data structure described above involves two types of data array:

corner and contact arrays. Program UDEC uses a number of other arrays (or groups

of contiguous memory). The complete set is as follows:

- 19 -

1. Block

2. Domain

3. Corner

4. Contact

5. SDEF extension

6. Zone

7. Grid-point

8. Domain extension

Appendix III lists the complete contents of these data groups. Groups

3 and 4 have already been described; Group 1 stores data for each block, such as

centroid, velocity, material type, and constitutive type number. Group 2 stores

the pore-pressure for a domain and an accumulated displacement that is used to

trigger a contact update for the domain. Group 5 contains the data necessary

for simply-deformable blocks, such as stresses and strain-rates. This group is

linked to the corresponding block data (Group 1) by an extension pointer that is

zero in the case of a rigid block. Groups 6 and 7 store geometrical and connec-

tion data for fully-deformable blocks, where the blocks are discretised into

triangular zones and grid-points. Again, the linkage from the corresponding Group

I is via the extension pointer. Group 8 stores data when edge-to-edge contacts

are detected. Each Group 8 data block is linked to the corresponding domain data

(Group 2) via an extension pointer.

3.3 Support Structures

A number of other lists and pointers are used, so that data can be

accessed rapidly and conveniently, particularly when cycling through the main cal-

culation loop.

All blocks, domains, contacts, zones, and grid-points are linked together

into five separate lists. Pointers to the starting address of each list are pro-

vided; Fig. 3 shows this arrangement schematically.

In order to scan through block corners rapidly, and to access, con-

vclently, tic orne2a to either side of a given corner, a "reverse list" is

provided for each block that links the corners of a block together in the anti-

clockwise direction. It will be recalled that the normal clockwise list of

- 20 -

ALL BLOCK
DATA ARRAYS

IDPN 0 DALL DOMAIN
DATA ARRAYS

ALL CONTACT
,ZCPNT C C C DATA ARRAYS

" Z ALL ZONE
BLOCK ARRAY .DATA ARRAYS

E.XTENSION-"*

POINTER ALL GRID- POINT
DATA ARRAYS

I

FIG. 3: LINKED LISTS FOR MAIN DATA ARRAYS

PETER CUNDALL ASSOCIATES

- 21 -

corners could be broken at any number of places to include a contact array. The

reverse list has no such interruptions: it simply links corners. Fig. 4 illus-

trates the reverse list.

Each contact joins two blocks and two domains; pointers are provided

in the contact array to these four addresses. Two further words in the contact

array point to the two corner lists circulating around the two blocks. It is

important to establish an ordering convention for contact pointers, as several

exits are possible after entering a contact during a scan. Fig. 5 gives this

convention. For example, when entering from Block I (with block number equal

to the contents of the word with offset KBl), the domain to the left will be found

from the word with offset KDl.

A further convention is observed in the ordering of contacts and corner

data in the anti-clockwise list running around a block boundary. All contacts

appear in the list in the order in which they occur physically. Since corners

are rounded, the actual location of a corner is ambiguous, particularly if there

are several contacts on one corner. The convention is adopted whereby the corner

data array is always placed after all the contact data arrays for that corner.

Fig. 7 illustrates this convention. The convention is convenient because a given

contact can always locate its associated corner(s) by following the linked list

ufftil a corner is found.

Several data arrays contain additional pointers not noted above: a com-

plete list is given in Appendix III for each data type. As an example, each group

of corner data for a fully-deformable block includes a pointer to the data group

of the corresponding grid-point. Conversely, the grid-point data incorporates a

reverse link to the corner data.

3.4 Memory Management

All requests for memory are handled by the subroutine FIND. FIND is

given the number of words required, and responds by returning the address of a

newly allocated data group, if memory is available. Fresh memory is used to

provide space for a new array unless a group with the correct number of words has

previously been returned. This reclamation of memory is made possible by main-

taining a linked list of redundant memory groups. The list is constructed by

subroutine LOSE and is pointed to by variable JUNK, and its structure is illus-

trated in Fig. 6.

- 22 -

\ CORNER ARRAY

...

....... O.NEX.BLOC

...R.LA. O R E R L N K G

..... LIS O....... BLOCKSX BOC

.... 234

TO NEXT CONTACT
DOMAIN I .. OR CORNER

ON BLOCK 2

............

TO EX

BLOOCK 2

NOTE: ~ ~ ~ ~ .. .(IKB 0 RE.R.T.T..O.SET
LISTED.. IN.APENIX.

FIG. ~ ~OVETO.SE.O PITR WTI

UALCONTACT ARRAYAN

P1711 UNAL ASSOCIATES

-24-

JUN K

TO NEXT GROUP

DATA GROUPS
N I CONTAINING

T NI WORDS

* DATA GROUPS
N20 CONTAINING
L N2 WORDS

(LAST ITEM CONTAINS ZERO POINTER)

TO LIST OF DATA GROUPS CONTAINING N3 WORDS

(ZERO POINTER

DENOTES LAST
INDEX ITEM)

FIG. 8.: STRUCTURE OF 'JUNIK LIST' HOLDING REDUNDANT

GROUPS OF MEMORY.

PETER CUNDALL ASSOCIATES

-25-

BLOCSLOC 3 LO

CONTAC NAC 2-4

.. ...S.AL ..R.N.. EN

..
C O N T A C D ATA3 -

a) PYSALATRANGEMELNE IT

FIG.~ ~ ~ ~ ~~~CRE 7O OSHWTE OVNIO O ODRN

CONTACT ANDAC CORERTAT

PI~hCUNDLL SSOCATE

-26-

TO NEXT
DOMAIN

DOOMAIN

DATON~' . .A~

~ -..... 'LIK POM OMAN.RRA.TOLIS.AOUN..OAI

LISOOMDOMIN

FIG. 8.: DOMAIN LINKAGES

PETER CUIDALL ASSOCIATES

-27-

No attempt is made to subdivide memory groups when smaller numbers of

words are required, but this technique could be used if desired. The implemen-

tation of a suitable scheme should not be too difficult, since all memory manage-

ment is handled through only two routines.

3.5 Access to data in the main array

Integers and real numbers are both stored in the main array, IA ().

In order to save space on small computers, the program UDEC has been written in

such a way that the word length for integers can differ from the word length for

real numbers. The following schemes are possible, for example:

Integers Reals

16 bits 32 bits

32 bits 32 bits

16 bits 64 bits

32 bits 64 bits

64 bits 64 bits

This flexibility has been achieved by adopting a particular convention

when accessing data from the main array. Integers are accessed directly, as

follows:

N = IA(IADDR)

Real numbers are always accessed via a subroutine call:

CALL SUB (IA (IADDR))

SUBROUTINE SUB (A)

coloCN/ / KOFF

DIMENSIONI A(l)

R - A(KOFF)

Rert . is the required real number and KOFF is the offset betwe&n the

calling address IADDR and the location of the number R. IADDR is typically the

pointer to the start of a particular data array, and KOFF is the offset corres-

ponding to the particular variable being accessed.

- 28 -

As set-up at present, the program takes the space of two integers to

store one real number. This can be changed by giving different values to the

data offsets, which are variables starting with the letter K. Appendix IV

gives further details.

- 29 -

4.0 USE OF PROGRAM

The operation of program UDEC is very similar to that of the previous

programs RBM and SDEMP but the user has, in general, more flexibility in the

sequence of operations that may be requested. Appendix I lists the input com-

mands and provides a description of each. Appendix II contains the input and

output from some complete runs. The runs illustrate the use of all available

commands, as well as providing sample problems, which can be used to check

versions of UDEC set up on other computers.

4.1 Creation of Blocks

The creation of the assembly of blocks differs greatly from that of

previous programs. Instead of specifying each block individually, a single,

large block is created and then subdivided repeatedly into many small blocks.

Blocks may be deleted at any stage in order to generate assemblies of complex

geometry. Blocks may be split and deleted even after cycling has started.

4.2 Block Types

Blocks created initially are, by default, rigid. Individual blocks

or groups of blocks subsequently may be changed, before running, to simply-

deformable or fully-deformable blocks. The program also allows block types

to be changed during a run, but this should not be done unless there is a good

physical reason for it; the program may have to be modified if stresses, for

example, must be preserved.

Fully-deformable blocks are subdivided internally into a mesh of

triangular zones. Each zone is specified manually, using a GENERATE command,

which takes as arguments lists of grid-points and zones. A grid-point must be

assigned to every boundary point (corner) of the block. Grid-points that are

placed on edges cause new corners to be created.

4.3 Material and Constitutive Numbers

Each block and contact carries both a material number and a constitutive

number. Each material number may be associated with a different set of material

properties. Independently, the program may refer to different constitutive models

for different blocks or joints. The present version of the program contains block

and contact subroutines corresponding to constitutive number 1. These subroutines

- 30 -

model linear elasticity and Coulomb friction, respectively. Dummy subroutines

exist for constitutive numbers 2 to 5; these may be replaced by user-written

routines as explained in Appendix IV. If a contact is not given a material

and constitutive number, it assumes, by default the numbers of one of the blocks

comprising the contact. Material properties and even constitutive numbers may

be changed during a run, but the user should be sure that the change is physically

reasonable. The program prevents the user changing block masses after cycling

has commenced, as this would almost certainly be unreasonable.

4.4 Corner Rounding

The ROUND command influences the amount by which corners are rounded,

by setting the distance from the true block corner to the point at which the

circle is tangent to either edge. The command should not be used after cycling

has started because a change in corner geometry would have an unpredictable effect

on contact forces. The rounding distance is also used for other purposes, notably

for controlling contact detection and deletion. Tolerances are set for these

functions, and in the present version of UDEC are taken as fractions of the

rounding length. This calculation may be changed by modifying subroutine TOLSET;

such a modification may be necessary if very small rounding lengths are needed,

since in that case contact updating may be unacceptably frequent.

4.5 Printout

All input lines are echoed, and preceded by the symbol > to distinguish

them from output produced by the program.

Printout is generally self-explanatory, with full error messages.

4.6 Restrictions and Cautions

The program cannot be regarded as being in its final form, as several

planned facilities, traps and options were not completed in the time available.

The program is potentially very powerful, as it can model anything from a con-

tinuum to a complete discontinuum. But this very generality ensures that there

are many opportunities for misuse.

The calculated critical time-step is only approximate. If numerical

instability is suspected, the same run should be made with half the time-step

- 31-

and double the number of cycles. Any significant difference in the results in-

dicates that the original time-step was too large.

Blocks that become detached from their neighbours may, under some cir-

cumstances, not make correct contact again. The program always maintains one
"virtual" contact for a block that becomes detached; this is to keep the block

linked to the data structure. However a potentially new contact that would

cross the track of the virtual contact will not be made correctly, if at all.

The logic to deal with this situation is quite straightforward, but has not

been written yet. No problems should occur for fairly tight rock masses.

At present, corner radii are only re-calculated when a CYCLE command

is given, although~the centre coordinates for each corner circle are updated at

each time-step. When running problems in which deformable blocks are changing

shape rapidly, the total number of required cycles should be split up by using

several CYCLE commands. In this way the radii will never be too much in error.

4.7 Incompressible Plastic Flow

Fully-deformable blocks are discretised internally into a mesh of

finite-difference triangles. Such assemblies of constant-strain triangles are

found to be too stiff when plastic flow is occurring under conditions of near-

incompressibility: for example, collapse loads are overestimated. Nagtegaal
et al (1974) explained this phenomenon, and Marti and Cundall (1980) proposed

a procedure for overcoming the problem. This procedure is called "mixed dis-

cretisation" and consists in averaging the volumetric calculation over two

adjacent triangles, while the deviatoric calculation is done separately for each

triangle. Mixed discretisation could be incorporated easily into UDEC, since

a linked list already exists that could serve to combine alternate triangles

volumetrically.

- 32 -

5.0 CONCLUSIONS AND FUTURE DEVELOPMENTS

A powerful computer program has been developed that can model a wide

spectrum of problems in solid-body mechanics, ranging from a continuum at one

extreme to a completely discontinuous medium at the other. Furthermore, arbi-

trary mixtures of the two can be accommodated. The program differs from pre-

vious programs mainly in respect of its data structure, which is designed to

have the same topological properties as the physical structure that it represents

The advantage in this is that any structure or connection that exists physically

has an analogue in the linked-list space of the data structure.

The contractural objective of the work reported here was to develop

a program in which rigid blocks, simply-deformably blocks and fully-deformable

blocks could interact with one another. This was achieved. Innovations that

have been made, in addition to the new data structure mentioned above, are: the

creation of block systems by splitting and deletion, and the use of rounded

corners to prevent "locking-up". Parametric studies may be made in which the

rounding dimension is varied for the same problem. More utilitarian improvements

include free-format input with powerful parameter handling and continuation line

logic, and the fact that modifications and changes to blocks and properties may

be made at any stage during a run.

More time was spent developing and coding the new data structure than

was anticipated. Consequently several planned facilities have been provided for

but only exist in skeleton form at present. The reason for this is simply that

time ran out, and not that any difficulty is involved. The program UDEC con-

tains incomplete coding for: pore-pressure generation and dissipation, edge/edge

contact, automatic zoning for fully-deformable blocks, dynamic cracking, struc-

tural connection and handling of initially-free blocks. Some of the coding

is almost complete, but in other cases has only just been started. The total

time for completion of all items noted above would be about six weeks.

Program UDEC has been written in modular form in anticipation of future

extension. Further developments, such as dynamic input and non-reflecting

boundaries should present little difficulty.

- 33 -

REFERENCES

NAGTEGAAL, J.C., D.M. Parks & J.R. Rice, (1974), On Numerically Accurate
Finite Element Solutions in the Fully Plastic Range, Computer Meth.
in Appl. Mech & Eng, 4, 153-177.

MARTI, J. & P.A. Cundall, (1980), Mixed Discretisation Procedure for Accurate
Solution of Plasticity Problems", submitted to Int. J. Of Num. & Anal.
Meth. in Geomechanics; pre-prints available from: Peter Cundall Associates,
14 Cabrera Avenue, Virginia Water, Surrey, England.

- 34 -

r

APPENDIX I - USER'S MANUAL

I-]. Input Commands

1-2 Error Messages

-35-

Appendix I-I

Input commands for UDEC

Notes: Upper-case letters in a command or parameter
must be typed; the remaining letters are optional.
Lower-case parameters stand for numeric values. Integers
must be given for parameters starting with 1,j,k,l,m,n.
Real numbers may be given as integers, but
not vice versa.
Input is free-format: parameters may be
separated by any number of the following
characters, in addition to spaces:

An additional line should be given
at the end of the input file (after

the STOP command).
The first command should be START or RESTART.

* = comment line
+ " continuation line

Block Material n Constitutive m xl yl x2 y2 ...

Create a rigid block of material number n
and constitutive number m.
Defaults are n-1, n-, if m, n omitted.
Corner coordinates are:
(xl,yl), (x2,y2) etc.,in a clockwise direction. Continuation
lines may be used but a pair of numbers defining a corner
must not be separated. Only one BLOCK command may
be used per run at present. Further blocks may be
created with the SPLIT command, and unwanted ones
deleted with the OELETE command.
Any blocks may be changed to simply- or fully-
deformable with the CHANGE command.

Change xl x2 yl y2 Sdef Material n Constitutive m
Fdef

All blocks with centroids lying within the range
xl<x<x2 , yl<y<y2 are changed to simply-deformable
or fully deformable (Sdef or Fdef respectively). Material
and constitutive numbers may also be changed.

DAmping fcrit freq P:ass
Stiffness
Internal

Viscous camping is applied, in the rorm
of Rayleigh damping. If a qualifier is
not given as the third parameter, full
damping is used, with fcrit as the fraction
of critical damping, and freq as the centre
frequency. The word "Mass" eliminates the
stiffness-proportional dashpots, and "Stiffness"
eliminates the mass-proportional dashpots.

-36-

The word "Internal" causes the specified
damping to be applied to the 3 internal degrees
of freedom of simoly-deformable blocks.

DElete xl x2 yl y2

All blocks are deleted in the range
xl<x<x2, yl<y<y2

Dump n m

Dump memory to printer from the main array
from address n to addess m. Internal
pointers MFREE, JUNK, IBPNT, ICPNT and
IDPNT are also printed. HFREE gives the
highest memory location that is currently
free.

FRAction f

is taken as the fraction of critical
time-step to be used.

Fix xi x2 yl y2

All blocks are fixed in range
xl<x<x2 , yl<y<y 2

FRee xl x2 yl y2

All blocks are set free in range
xl<x<x2 , yl<y<y2.
M'ote: by default, all blocks are free initially.

Generate xl xZ yl y2 Manual Gridpoints <glist> Zones <zlist>
Automatic

The first block encountered in the range xl<x<x2, yl<y<y2
is discretised as fully-deformable. The automatic
option is not available yet. For manual generation,
a list of grid-points, <glist>, and zones, <zlist>
must be given. The format for <glist> Is:

xl yl x2 y2 x3 y3

where each x,y pair is a coordinate of a grid-point.
If a given coordinate lies within a certain
tolerance of a block corner, the grid-point is placed
on that corner. If the coordinate lies within the
same tolerance of a block edge, a new corner is created in
the edge. The tolerance is taken as 0.9 times the
rounding length. The format for <zlist> Is:

11 ml nI 12 m2 n2
Each triple corresponds to the three grid-points that
define the zone, where the numbering of the grid-
points refers to the order in <Clist>, starting with
the last (i.e. last grid-point Is number 1).

Both <glist> and <zlist> may extend over an
arbitrary number of continuation lines, but doubles
and triples should not be split over two lines.

- 37 -

Grav i ty gx -y

Gravitational accelerations are set for
the x- and y- directions.

PLot

All blocks and centroids are plotted

Print Blocks Contacts CORners Domains List DList

Data are printed on blocks, contacts, corners,
domains and linked lists for blocks and domains.

PROperty Material n Bulk b Cohesion c
n K ab Density d

KNasn Friction f
KS-ss Gag

Material properties are defined for
material number n. Propez'tes are:
bulk modulus,b; shear modulus,g; density,d;
joint normal stiffnesssn; shear stiffnessss;
friction coefficient, f; cohesion, c.
The first parameter must be the specification
of material number.

Restart

The program is restarted, using data
from the restart file

RSet v ia ioff

The real value v is inserted in the
main array at address Ia, with offset ioff.

ROund d

Each block corner is rounded with a
circle that is tangential to the two
corresponding edges at a distance d
from the corner.

SAve
The current problem state is saved on
the restart file.

SCale s

Plot scale is set to s

SPlit xl yl x2 y2

All blocks in the path of a line
extending from point (xl yl) to x2 y2)
are split Into two. At present, the line
should not pass through any corner, or
run too close to an existing edge.

- 38 -

STArt

The program does a cold start.

S top

The run stops.

- 39 -

Appendix 1-2 :

Error numbers
A i

I Memory overflow
2 Unrecognisable command
3 !lot start or restart as first command
4i Material number out of range
5 Block has less than 3 corners
6 Negative or zero block area
7 missing parameter
8 Missing y-value
9 Constitutive number out of range
10 Unrecognised parameter
11 Contact stiffnesses undefined - cannot cycle
12 Zero mass block(s) present - cannot cycle
13 Mass damping for rigid-body motion too high.
l4 Rounding length too great
15 Contact overlap too great.
16 Internal mass damping too high.
17 Cannot split fully-deformable block.
18 Only one block may be created at present -

use SPLIT for more.
19 Cannot delete final contact in problem.
20 Internal error, subroutine DELC.
21 Cannot delete fully-deformable block at present.
22 Fifth parameter must be "Manual" or "Automatic"
23 Not available yet
24 Cannot find block in range
25 Zone pointer references non-existent grid-point
26 Missing data

-40-

APPENDIX II EXAMPLE RUNS

II-1 Ball Rolling

11-2 Collapse of Opening in Jointed Rock

-41-

II-i Sall Rolling

This example illustrates that corner rounding can be taken to the

extreme of creating a circle from an angular block. The complete input se-

quence to create the blocks and run the problem is given overleaf. Fig. 11-1

shows the system of blocks after splitting, but before deletion of unwanted

blocks and final rounding. Fig. 11-2 is the plotted output from UDEC, with

plots superimposed after successive 200-cycle increments.

4

- 42 -

'if A ,R 1
PROIP MAT~l DENS=20O0 KN~t.E08 KS=i.EOB F=2.
GRAVID2 +. -8.1
O)AMP1 =.5 16. ;ASS
FHA4C 0.10

spiu1f -1.1.5 Is.,8.5
SPLIL 10.5,5. 7.5,11.
siu'ii125. .1.

SPLIT -1 , . 12 ,.

GHAVEIF, 0.,9 -10.

CiCui. 300
p o
PLIOT 0

CRACLfy 0. 10

CfCLJ- 2"U

PB

PLOiT I

CYCL 2v

P b -43-

!II

FIG. 31-I, SYSTEM OF BLOCKS PRIOR TO DELETION

FIG.rl-2: MOTION OF 'BLOCK'UNDER GRAVITY

-44-

11-2 Collapse of Opening in Jointed Rock

Figure 11-3 shows the initial state of a rock system as produced by

the input sequence given on the following page. The example is intended to

demonstrate the interaction of all three block types in the same problem. The

upper layer of rigid blocks is heavier than the rest. Figures 11-4 onwards

record the movements that take place after several blocks have been removed.

It is interesting to note that "hang-ups" do not occur, due to the rounded

corners. The fully-deformable blocks, which are discretised internally into

four triangles, are deforming in modes that are more complex than those that

are possible with simply-deformable blocks.

f~~
R R

N a RIGIR
S a SIMPLY DEFORMAFLE

F a FULLY DEFORMASLE

FIG.U-3: INITIAL GEOMETRY

- 45 -

S TAkT*1
SCALE~*L

FRAC .'."u
GRAVI~i -i

PROP viA1=1 ti - a.o=40,)t tj~ttJs~ I./ ~ * ri fru.

SPL I I) Iu n1 t, L
SPL.IT -1 0) 01 kO

SPLIft Iu i JAJ 41

SPLIT i~u - 14) 41
SPLIT 3) t 'J tI
SPLIT '40 % ~4,j 41

SPLIT 5
SPEII 20 7 .u 60i 43*

CH4ANGEr V j U 2U) 3U SOE)'
CH1ANG,. 0 eL u i 2v) FU0

CHIANGE~ iij '+uU t & j 4 Sc,

fCHANGE~. qu ou iuj 4' r'U0r- F
FIX 0 0.) o 1k)

+ (lu,lu) L1,Q u J-sI, , b z ,S4,) ,Z).5)

*GENERAtt 10 i;ej 1U) 1(j . G t ' I l' 1 , Ii i u
+ 20,2u) L4n' 1 .i4 1 ,3, p Z) 3 4 ,

+ bp. L34 . ,5~ 4, 3 , 3 0 4 p5 '*11I,:-a

UUMP I1I
DAMP .2!) .2
DAMP U.25 1.0) A. .kjL.AL

CYCLEj 1 Ou

END

-46 -

FIG. 1 - 4

Fla. 11- 5

-47 -

FIG.E1-6

FIG. IM-7

-48-

FIG.Il-8

-49 -

APPENDIX III - PROGRAM GUIDE

III-1 Main Common Block Variables

111-2 Parameters & Data Groups

111-3 Subroutine Functions

111-4 Subroutine Calling Map

I

- s0 -

Appendix III-1 - Main Common Block Variables

LINE(80) Buffer for current input line in Al format.
LIMEI(80) Buffer for next Input line.
LPNT(I) Pointer to start of parameter I in LINE()

after removal of blanks, etc.
RAFLAG
PPFLAG .TRUE. if pore-pressure calculation requested
ERFLAG .TRUE. If an error has occured
STFLAG .TRUE. if the first input line has been processed
COFLAG .TRUE. if the current line is a continuation
NCFLAG .TRUE. if the next line is a continuation
JMPSAV Index of last computed GOTO In 40N
NERR Error number
JUMK Pointer to list of spare memory grouos

MFREE First unused memory address
IBLOCK Current block number
IDOM Current domain number.
ISTACK Stack pointer
NCYC Currently requested number of cycles
MCTOT Total number of cycles
TDEL Time-step
FRAC Requested fraction of critical time-step
IROUTE Routing number, used in UDC
NLIME Output line count
NPAGE Output page count
JMPGEN Routing number for continuation line in GEN
ALPHA Mass damping coefficient
BETA Stiffness damping coeffient
CON1 Damping factor
CON2 Damping factor
ALPB Internal mass damping coefficient for

simply deformable blocks.
CIB Damping factor derived from ALPB.C29 "1 "

DEGRAD PI/180
P1 3.14159
PSCALE Plotting scale
ATOL Distance between particles at which a contact

Is first formed.
BTOL Distance between particles at which a contact

Is broken.
CTOL Maximum (negative) overlap allowed

when forming contacts
DTOL Rounding length
DTOL2 -OTOL/2.0 (maximum contact overlap)
ETOL Limit on maximum domain displacement

to trigger contact update.
FTO L
GTOL
HTO L

- 51 -

I

IBPhT Pointer to list of blocks
ICPNT Pointer to list of contacts
IDPMT Pointer to list of domains
IODPNT Pointer to outer domain
AKN(I) Normal joint stiffness, material I
AKS(i) Shear joint stiffness, material I
AMU(I) Joint friction coefficient, material I
COH(I) Joint cohesion, material I
DENS(I) Density, material I
BULK(I) Bulk modulus, material I
SHEARCI) Shear modulus, material I
AL.011I) Lame constant, material I
ALAM2(I) Lame constant, material I

IA() Main array

I

- 52 -

Appendix 111-2 Parameters & Data Group

Offsets for block data array

Note: the first integer in each block array
(offset 0) is the block type number, as follows:
I rigid block
2 simply-deformable block
3 fully-deformable block

KB Pointer to next block In block list
KP Pointer to one corner in block's corner list
KAT Material number
KCOMS Constitutive number
KX x coordinate of centroid
KY y coordinate of centroid
KXD x velocity
KYD y velocity
KTD Angular velocity (anticlockwise positive)
KSM Block mass
KBI Moment of inertia
KBFX x centroid force-sum
KBFY y centroid force-sum
KBFT centroid moment sum
KBEX extension pointer (to SDEF or FDEF data)

Offsets for corner data array

nJote: the first integer (offset 0) contains
the value MCOR to denote a corner

KL Pointer to next corner or contact on
block, in clockwise direction.

KR Pointer to next corner in anticlockwise
direction

KNB Pointer to host block
KXP x coordinate of corner
KYP y coordinate of corner
KXCP x coordinate of local circle centre
KYCP y coordinate of local circle centre
KRAD Radius of local circle
KXDP x velocity of corner
KYOP y velocity of corner
KGP Pointer to corresponding grid-point if block

Is fully-deformable

- 53 -

Offsets for contact data array

Note: the first integer (offset 0) contains
the value MCON, to denote a contact

KC Pointer to next contact In contact list
."31 Address of first block Involved in contact
KB2 Address of second block Involved in contact
KL1 Pointer to next item in clockwise list

of block corresponding to KB1
KL2 same as KL1, but for block KB2
KDl Address of domain to left of contact,

going from block KB1 to K82
KD2 Address of domain to right of contact

going from block KS1 to KB2
KCM Material type number
KCC Constitutive number
KXC x contact coordinate
KYC y contact coordinate
KXDC relative x velocity (of block K82 relative

to block KB1)
KYDC relative y velocity
KCS relative shear displacement
KCN relative normal displacement
KCFS shear force
KCFN normal force (positive compression)
KCCOD code number:

1 corner/corner contact
2 corner/edge contact (K1. corner,

K082 .. edge)
3 edge/corner contact

Offsets for domain data array

Note: the first integer (offset 0) contains the
---- value MDOM, to denote a domain

KD Pointer to next domain in domain list
KPP Pore-pressure for domain
KUMAX Fictitious domain displacement
KILOOP Pointer to one contact in anticlockwise

list around domain

- 54 -

Simply-deformable extension array

KEDI1
KED12) Strain-rate
KED21) tensor
KED22)

KSI11)
KS112) Internal stress
KS121) tensor
KS122)

KSAll) Applied stress
KSA12) tensor (multiplied
K3A21) by block
KSA22) area)

Offsets for grid-point data

KG Pointer to next grid-point in grid-point list
KCOR Pointer to corresponding block corner
KXG x coordinate
KYG y coordinate
KXDG x velocity
KYOG y velocity
KGFX x force-sum
KGFY y force-sum
KGPM grid-point mass

Offsets for zone data

KZ Pointer to next zone in zone list
KZG Start of triple Pointer to 3 surrounding

)grid-poi nts
KZS11
KZS12) Stress tensor
KZS22
KZM Zone mass

Logical unit numbers
----------------- ---

LUNIF Unit number for Input file
LUNOF Unit number for output file
LUNG Unit number for general I/0 (e.g. restart)
LUNP Unit number for plotted output

- 55 -

Number of words in data arrays

r4VCR Corner
M~VBL Block
I'JVCN Contact
N4VOO Domain
NVSD Simply-deforrnable extension
NVZO Zone
NVGP Grid-point

Array limits

MTOP Size of main array (IA)
NMAT Maximum number of materials
NCONS Maximum constitutive numbers
NTYP Number of block types (rigid, SDEF etc)

Head codes (contents of first integer in data array)
------------------- --_m --- ---------------------------------

MR IG al Rigid block
MSDEF -2 uimpy-deformnable block
MSDEF -2 Simpy-deformable block

-56-

Appendix 111-3 Subroutine Functions

SUBaROUTlcw. ACCUM(A)

-RECUKL; MAA AND M1'J V-LUCItIc;S Fut'% CLRNe~Nt

SUBRiOUTI,44 AkiL'Ji

-BLUCKrS A*(E kPLCTT.Lu

SUBRUUTlwt. AhcCRAeJ)
-PL.OT AR~C, zADIUS KAO, CENIhZ LA,ie), VRO01 (Xl,'ll)
-TO (X2,Yi). PEN ASSUMEtD uOaii i taiti.

BLOCK DATA Fki.i
-IITlALaISE FIXED PARAMETERS. thla. ROult

-(AMUO l£iI CUMON 6LUCK /PAiA(*4/.) Ciii~i d. RtP?ACr*.LJ
-BY A SET Lu PAAAME.'&6 S'IATEc~mlb IF

-SUPPURTEDL ift THE CUMAPILFelR.

SUBROUTINE EtDA2I~iI,.LUINw
-MAKg. A COoTiACT Tu af~iiw UOiMA.L.'i ju cTvvEL. LISI iTE~s
-LAL)1 AND IALJ2 (SLU)CKS IA61 ik iAcd4). ICUU=COOPi Of~ NtL% 6-.
-(XC,YC)=COOIRDINA'r" OF CONrACT.
-IDN~wRLTURN.O NEW DOMAIN NU~cE.

SUBROUTINiL CC(Al,.A2)
-PARAMETLERS FOK CORNJER-CORNER4 CIJNTACT

SUdROUT?4E CkC(Al,A2,AP)
-PARAMETERS FUR~ CUi~NiR-EDGE CUNTACI

SUBROUTINE ChANGE
-CkiANG4 AV'IRIb JS OF EAISTINk'a d~~ allitri~ mANGL

SUBROUTINE. CLI
-EL.ASTIC, ISUTeROPIC CONSTITUTIVE~ LAaW

SUBROUTINE CVE1.DCBC)
-UPDATE ChkLJAV CORACOCT iL

-COR6) F I LUCK AmA;C ~COiATAt

-57-

SUBROUTINrL CVE;LFD(C)
-RELATIVE. CUriTACT 4c:LAClTILS Fajgq %i.P VeLCI]±j..

SUBROUTILNE CYCL&c
-MAIri CALCuu~AON CYtCLE.

SUBROUTIN&c DAi.IlP
-PRUCLSS i)AMliv(G COMMAND

SUBR~OUTINE Oci..,
-OkL.Tk 6L.OCi IBLiOCK

SUBROUTIN4 DEL.CLIAC)
-DELLTt CONTACT IAC

SUBROUTINE D6LjLSTcIA,IPNT,KOFF)
-OELc.TE ITEMi LAD FRUM LIST PUN'E TU
-BYt IPNT, wITh OFF64T iIThIN AN Il~m OF KOFF

SUBROUTIaE FOC(IkPP)
-DEAL o~ITiI FORCE APPL~IED AT coRNh OF FULLY-DEF bLUC,

SUBROUTINE FDE(IPAI IPB)
-DEAL WITH FORCE APPLIED TO EUGE OF FLLY-UEF 6LOCK

SUBROUTINE~ FDEF
-SCAN THROUGH GRID-POINTS & ZUNLS.. FUR~ FULLY-DEF 6LOCK

SUBROUTINE FIND(N,NG)
-FINDi N WORDS (JF MEM'ORY
-NG = RETUHRJED AODlRESS
-RFLAG 15S $jT IF Mh.MORf CANNF~OT bk. FOUNO.

SUJBROUTINE~ FIXCIFIX)
-SET OR RESET FIX FLAG FUR AOLL bLUC$S WdITHIN RCANGE

SUBROUTINE FURD(CON)

-FUkRCE/DISP CAL.C. FOR CON4TACT

SUBROUTIN6 GEN
-PRICSS "%ai.NEtCATV2 COMMAND, WMICtl G604.KATES ZONING FUK
-ULLY-DEFUkMAdL4 OLJ~CK h.ITtR~t m'Ai4ukLLf Oh AOJT0.hMlICALLf.

SUBROUtImE GJ.(IA6,AR,KG2)
-FUR oLuChi Ao, CUi*OIJLS AkR;A, HAuluo OF
-GiRATIU4 SQUARED ANO CENTRULO (AP LkV)

FUNCTION GETR(A,KOf)
-GkT REAL VALIue FROM MAIN ARRAX wITH
-OFFSET KUFF

SUBROUTINE iA6aT

-PROGR~AM bTOjPS UNUO.* CERTAIN CUh~lIIul-as

FUNCTION ICAL8(1C)
-GET CAL1LING ADUKES.S FUR~ CON £ACI IC FtROM SLuC% IBLUCh

FUNCTIO"~ .LOUmi (IAV)
-RTux,4 DuMAJIN AOL)I.SS FOR~ SEGMENI LAO), bLOuCi IoLCK

FUNCTION IG4(IA~),iuFF)
-GET IATE~k.A~ FROM MAIN ARRAYt 4j lA+rF

FUNCTION iGETGP(I)
-FIND I'TH %GkRIDk'OINT ADDRESS, bLUJCz IbLJUCK

SUBROUTINE II4SG
-INITIALa ALS.SAGE FRUM CODE

SUBROUTINE INckRT(AU,10p,,,'fr,YS,hUlICAA)
-COMPUTE i' ..MENT OF INERTIA AouUUT G.LIVEN AA16

SUBROUTINE INI
-PREPARL FUR CYCLJING

SUBROUTIvE INSE.CTCY4.3)~
-FINDi IF 2 LIN". INTERISECT Kct:TU~RnS i a=.Rua.)
-AND IF' SQ, RETURM COORDS CAP,IP).

- AND ((X3,Y3),(A4,14))

-ALL NUf4-STANDARU 1/0 DONE hkiL

FUNCTION IVAR(NPAR)
-TO RETURNt INTEGER VALUE OF PARAIER~A N~PAR

SUBROUTINE JUMV8
-TO JUMP TO NEi 8LuCK IN DOM4AIN 17kwi CUrcIACT IAD

SUBROUTINE LOSE(N,NG)
* -TO R&.TUIN N WORDS OF MEMORY AT' ALILRLSS NG

* ~-APSBRUUTIC .4Aca(IA,UKAS,UMUI,A,x)
-Tn -L*&tA iA .tAS.$, mulJ i.Cbir(i
-IN aL.OCa(lAb,--

SUBROUTINE MAE(AAIIbjLlL . j.Lq
-FILL CONTACT DATA bLOCK AT J.ACP ANU~ LINK TU CONTACT LIST.
-IA61, IAi*2 z BLOCK ADORk.55k5
-ILI S 112 x ASSOCIAtED CIRCUA'TIk LISTS
-101 ID12 z DOMAIN ADRESSES -59-

-ICUD zCONDITION CODE

SUBRUUTL;4E MAKEP(IA0,1AL,IAR,X,i,lM6)
-FIJRA CuK'ac. 4 LAD, AHERE IAL=CLOCi'.jLSE L1'NK,
-IA =REVL8SE LINK, (A,l)COkiai.i% CUuRUSP
-IAbLJC& ADDRES

SUBROUJTINE MA'rCH(NTAd,INJOEA,NPAx,j)U~i&,oAj)
-TU MAfCmz INPUT SfrlIA~G TO Ki'Ltua IN rAz L_.
-IfipuL: Nf~ TAL6 OF UfrauiS~

INDEWX L1ISTC UF LrN;Ti
-NtPAR PARAMETER fwO. I4 iUT L1LNE

-OUTPUT: JUA4P DISPATCH~ NUm6ER
- bAUi TRuE.. F~k AI1SSIi t AAAElc

- OR STRLING NOT Fuuwud.

SUBRUUTINE MUN
-MONITOR 4;

SUBROUTINE MOTION(A)
-fLAm OF A4OILUN FOR SINGL. BLuCA'

SUBROUTINE MOVE(IA~l,IAD2,N~WO)
-MOVE NoD WORDS FROM ADDRE.SS LAD1 XU 1AO2

SUBROUTINE MVBAK(IAC,IA8,ICOD)
-MOVE CONTACT 6ACKNARDS PAST COkhEix (TXING

:WITh IT ALIL INTERMEDIATE COwIACIS).
-LACCNTACT; IABt6LOCK; ICOU=N~ CODE.

SUBROUTIN~E MVFUJRCIAC,LAB,ICOD)
-MOVE CUw~TACf FCIRwAIDS PAST CuxNt.r (TlAIG *ITH IT

-ALLs INTERML.OIArE
CUJTACVS).

SUBROUTINE. NEXTCP(IAU,IAON,ICALL)
-FIND NEAT ITEM UIADN) IN CORI Ra CHAIN AhD
-ITS CALLING ADDRESS, GIVEN CUK.RLNE ITEM, LAO~
-BLCK NUMdERt ASSUMED) LU 86 IoLUCK

SUBROUTIii NEXTD(IAD,IAON)
-FIND NeXT ITEM (IADN) IN DUU4A.N CHAIN.

* -IAD=CUkRKENr ITEml1 IOOM=DOMAi4.
-IdLOCK IS UPDATED) FOR~ EACH CUrNTACfL NC(JNtEkL.

SUBHOUTIL NE*xrUS
-GET *aLAT SEo~~ IN UUM.AIN, AOM R1LC a.G'L41 16

-CORNR:.tftL. IF CURR(EN'T St.~jimtNl IS A Lu~vill,
-FALSE UTHERnISL. CW4'ZAC=.rRUL.. If A CONIACT
-HAS JUST BEEN PASStW. THROUGH.
-"ITLA" COUNTS CONTACTS+SiGMENTS

-60 -

S-USROUTINE 'j4rXLP(IA0,IAP)
-FIND NA~cT CURN(NL (iAtP) IN BLOJCK CIA,
-GlvtLN CuRt.NT IrE[-., lAO, IN CHA.A.
-8LOCh iuMoaCk IS Id*.3CN

-PhINT LIST iT~i4 IAC

susROuTiNE uJUTFULG(IAD,1

SUBROUTINE OUTFUZ(IAD1)
-SCAN f$ROUGh Z~m FOR PRINTOUT

SUBROUTINE LUrCA,IAD,ICOR)
-PRINT DATA FOR GRID-POIaT, AKKAI AC)

SUBROUTINE QUTSD(A)
-PRINT OUT INTERN~AL VARIABLES FOi% SIMPLY-OLF. bLOCA

SUBROUTItJE PLOTS(X,Y,L)
-SCAL& 0 PLOT

SUBROUTINE POP(ITEM)
-POP 1:' FrROM STACK

SUBROUTINE PRINT
-MAIN PRINTOUT 1S DONE HE

SUBROUTINE PROP

-RiESPu T6 "PROPERTY" CUMMAriIL)

SUBROUTINE PUTFCE(B)
-PUT FORcCES rFRUM CONTACT INTO oLUCK AT b(3

S AU D IFCE INUGI-ON' OKCk. SUM

SUBROUTIt PUTI(IAD,ZKUFF,I)
* -PUT iwrEGER I AT IACIAD+KUFF)

SUBROUTINE Pubm(Ltm)
-PUSn 11LA JNTI' STACA

SUBROUTIN& PU'rPkAAAX4)
-PUT VALUE Uf PARAM~rER I INe AKIkAk
-AND CHt.Cih FOR RANGP; Of I

SUBRQ.LN!L gjTRiALtOff j)
-INSERtT HE~AL VALUE V 1rOt MAIN ARNAX
-WITH OFFSET Kar- 61 -

SUBROUTIL PUTSTR(S)
-PUT APPLaIkX .STSSS IN SItLl- FUKM'AdLE 6LCL\

SUBROUTliE PVtijLo,C)

-0() IS 66CA~ MAkAi: C() IS CO&"c.R~ Aici~i.

SU8ROUr~aE~ Pv~jFD(A)
-U00A1'E cati; i CuOF~s & V LUC.li'a i~mo J.&. vsLUL,

LOGICAL FUNtCTION~ UdCCIA6)
-R~ETURN S .TKUE. IF dLOCK IAd nAS AN CUNiACrb

SUBROUTINE QUERY(IAC)

LOGICAL FUNCTION~' RANEPCCAB)
-TKUI4NSIF IFOC CHA I LA5 6Sl~~zAUE AGE6 Ne

SUBROUTIwE REL1I
-SPLITS OuiS PIN T P O REfV.N i~TO

SUBROUTINE REL2XIA1IOA~I~Y,
-SAMEIA ELIg (BUT C N Aki LAS$,i AS4 INPUT)

- I AT O A dDu n R A L A I u O FS P A K A~ tI l i
i i f O

-RETURNS TRE IF taICHAR IS 1tA LPRAIU

SUBROUTINEI SPLTI(,)
-SOPIT SiiAASIN ~THEPT ?NOF GiKt IN EC.M~~~.

-SEorINS THAT LL. 3E SeuX

-F() 15 Tn.. AuXTbNSION ANa(Al Fuac SIIe'I-DEF DATA - 62-

SUBROUTlN-' 6T)r.L(d,.)
-8 kR.oc;cS irrOM STRAINVRAfES ... a~L ~wAL ~u~
-80C £3 Thw_ 6LuCK AkRAf
_() ii Tii4~creXtbU AHUiit

SUBROUTr~li £llui

tU o E m i. oLAiiKS, ETC Fk.iV Ii-i"J

-L1-4c A.jh) ;&(e.~ 1,40rA fU iLCA1±ui' U* ?Arir!h

SUBROUTINc TOL66E.
-SE lL&6iA,CE5 FRO AVf.a(A(E nOC' O St

SUBROUJTINE TxRJEAIAL,X,Y)
-GET TR~UE Lisr ixr~ 6EFORE cur -a (A(,i).

PROGRAM uDEC
.

-- --------------------- ft-aaaaaaaaaaa

-wRITTEN bY P?.A.CLJNUALjL, M'ARCri 196U, FUK U.S. Aft~i&

-(EUROPEAN RE36ARCn OFFICi.) Aa Opi &t NuCLEiAR AGEi4CY

-UNOER CUTACT LAJA3-79-C-v544

SUBROUTINEi UPDATE

-UPDATE UOMAlN lOOM

SUBROUTINE~ UPOL
-UPDALE C~eTAcrs 1.,4 COMAILN 100LJ-

SUBROULI?4c. VAae(N'PARO
-COMMON RoUtTNE FOR IVAR & hVAk

SUBROUT.INE XYCLR(A,X,Y)
-RETURi4S CUO.iE Ci)UaUS (X,Y) FUR CuKv-ER AkRAY .40

SUBROUTINE XYFO(AA,YL,XDYD)
-RETRIEVE Gki-PObIa COURDS im vtLuLClflF.S

SUBROUTi. ZCS
-TU i'kv Ujki(TH (L) Aoii) jvjli vriAurz (C,zi)
-OF LIL'. CA1,ll),(A2,ii)

SUBROUTINE Z6TAS(A,11hU'.)
-STRAI&-mA'rLS, STRSSES &. ri~mc G FURCE.S FOR A ZU44L

-63-

Appendix 111-4 Subroutine Calling Map

UMEC
-START -10

-MON -TIDY -SEP
-MATCH
-10
-IMSG
-PROP -MATCH
-FIX
-DAMP
-DELB -NErrCP

-DELC -NEXID -DELLST -LOSE
-LOSE
-DELLST

-CHANGE -MATCH
-FIND

-HALT -10

-PRINT -MATCH
-OUTSD
-OUTFDZ
-OUTFDG -OUTG
-OUTCP
-NEX(TCP
-NEXTD
-NEXTP -NEXTCP

-CREATE -FIND
-MATCH
-GEO -INERT
-CRAD
-TOLSET -GEO

-SPLIT -FIND
-MOVE

-NEXTCP

-NEXTP -NEXTCH
-MAKEP
-MAKEC
-MAXEB
-CRAD
-COORD -NEXTP -NEXTCP

-cc -ZCS
-CE -RELI

-ICS
-REL2

-TOLSET -GE0
-UPDATE -UPDTr -JUMPS -NEXTD

-NEXTY -NEXICP

-NEXTDS -NEXTCP
-QUERY
-JUMPS -NEXTD

-NEXTP -NEXTCP

-NEXTP -NEXTCP
-CZ -RELI

-REL2
-REL2
-NEXIOP
-cc -ECS
-SRIDCR -FIND

-NEXTCP
-COORD -NEXTP -MZXTC

-CE -RELl
-ECS
-REL2

-PUSS -FIND

-APLOT -PLOTS

-ARC -PLS

-INI -CRAD
-GEO -INERT

-TOLSE -GKO

-64-

-CYCLE -MOTION -CVEL

-PVEL
-STRlAIN -XYCOR

-STRESS -CLI
-CL2
-CL3

-M4~

_FD~r-NGrrcp

- NETE

-(ZNR -FIND
-FOD A ET CEXC

Mos "untins ad-ccao r _Z Surtie hhaelutdbowhe
been ~ ~ -C letou f h "aligma"

QICC

-QELLT

RVAR- -6S-

APPENDIX IV -GUIDE TO PROGRAM CHANES

-66-

APPENDIX IV - Guide to Program Changes

IV-1 Parameters

All Fortran variables initialised in the BLOCK DATA subroutine FRED

are constant during a UDEC run, and the DATA statements may be replaced with

PARAMETER statements if these are supported by the compiler. This should lead

to an increase in efficiency.

IV-2 Storage of Integers and Real Numbers

Program UDEC, as written, assumes that a real Fortran variable occupies

the space of two integers. This correspondence is only important for quantities

stored in the main array IA(). If UDEC is to be run on a machine having a dif-

ferent convention for storing variables, the offsets defined in the BLOCK DATA

subroutine will need to be changed. The offset of a variable, referred to a

particular data array, is defined as the number of words from the start of the

data array to the location of the variable, where a "word" can be integer or real,

depending on the type of variable. The numbering for integers starts at 0, and

the numbering for reals starts at 1. As an example, the offsets are given below

for the corner data array for the standard program UDEC, and for the program as

it would be set up on a machine in which integers occupy the same space as reals.

- 67 -

For i For
2 integers 1 integer

Variable _= 1 real [real

INTEGER REAL INTEGER REAL
COUNT COUNT COUNT COUNT

<head code> (integer) 0 (1) 0 (1)

KL (integer 1 1 (2)

KR 2 (2) 2 (3)

KNB 3 3 (4)

KXP (real) (4) 3 (4) 5

KYP " (6) 4 (5) 6

KXCP " (8) 5 (6) 7

KYCP " (10) 6 (7) 8

KRAD (12) 7 (8) 9

KXDP (14) 8 (9) 10

KYDP (16) 9 (10) 11

KGP (integer) (18) (10) 11 (12)

data array numbers not in parentheses are
for corners offsets used in program; other numbers

(see Appendix 111-2) are included to show the full sequence.

IV-3 Non-standard I/O and other Operations

All non-standard input/output is done in subroutine 10, and consists

of OPEN and CLOSE calls for the input and output files. These calls may be

replaced by equivalents if another computer is to be used.

The DECODE statements in subroutines IVAR and RVAR may be non-standard

on some machines, and should be replaced as necessary. No other ENCODE or

DECODE statements are used in the program.

- 68 -

Subroutine VAR packs characters into array IBUF, which is declared a

BYTE array. On some machines this operation may have to be done with an ENCODE

statement, if BYTE or INTEGER 1 variables are not allowed.

All INTEGER 2 statements may be omitted if they refer to single

variables; statements that refer to arrays should be replaced by DIMENSION

statements.

The statement INCLUDE 'COMMON.FTN' inserts at that point in the program

the parameter blocks and main common block. Many computers have a similar

facility, but is invoked differently.

IV-4 User-supplied Constitutive Subroutines

Dummy subroutines CL2, CL3, CL4 and CL5 may be replaced by real sub-

routines: these will be called for materials with constitutive numbers 2,3,4,

and 5 respectively. Input and output variables are passed in common block

/CLCOM/, where the names of the variables have the following meaning:

SlI) components of

INPUT S12 current stress tensor
S22

DE111 components of
DE12! strain increment tensor

OUTPUT {DS12 components of stress
ODS22 increment tensor

- 69 -

